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A B S T R A C T

The evolution of mobile malware poses a serious threat to smartphone security. Today, so-

phisticated attackers can adapt by maximally sabotaging machine-learning classifiers via

polluting training data, rendering most recent machine learning-based malware detection

tools (such as DREBIN, DROIDAPIMINER, and MAMADROID) ineffective. In this paper, we explore

the feasibility of constructing crafted malware samples; examine how machine-learning clas-

sifiers can be misled under three different threat models; then conclude that injecting carefully

crafted data into training data can significantly reduce detection accuracy. To tackle the

problem, we propose KUAFUDET, a two-phase learning enhancing approach that learns mobile

malware by adversarial detection. KUAFUDET includes an offline training phase that selects

and extracts features from the training set, and an online detection phase that utilizes the

classifier trained by the first phase. To further address the adversarial environment, these

two phases are intertwined through a self-adaptive learning scheme, wherein an auto-

mated camouflage detector is introduced to filter the suspicious false negatives and feed

them back into the training phase. We finally show that KUAFUDET can significantly reduce

false negatives and boost the detection accuracy by at least 15%. Experiments on more than

250,000 mobile applications demonstrate that KUAFUDET is scalable and can be highly effec-

tive as a standalone system.
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1. Introduction

Since last decade, the software development has been wit-
nessed to have a massive shift toward mobile applications. With
the growth of mobile applications and their users, the secu-
rity and privacy concerns are increasingly becoming the focus
of great concern to various stakeholders. For instance, more
and more users store personal data in their mobile devices,
even carrying out financial transactions such as online banking
and shopping from their smartphones. Some of these data can
be very sensitive. Consequently, hackers can have substan-
tial financial gain from such sensitive data and thus find mobile
devices to be lucrative targets.

It is not surprising that the demand for tools of automati-
cally analyzing and detecting malicious applications has also
grown. Most of the researchers’ and practitioners’ efforts in this
area target the Android platform, the largest share of the mobile
market. There has been a plethora of research in malware de-
tection for Android. Static and dynamic analyses are two generic
techniques primarily implemented by two approaches:
signature-based (Schlegel et al., 2011; Zhou et al., 2013; Zhou
and Jiang, 2012; Zhou et al., 2012) and behavior-based (Graziano
et al., 2015; Rasthofer et al., 2016; Tam et al., 2015; Wu et al.,
2014; Yan and Yin, 2012). Information flow analysis-based ap-
proach (Arzt et al., 2014; Enck et al., 2014; Gordon et al., 2015;
Li et al., 2015; Wong and Lie, 2016) is also proposed to detect
Android malware. We note that machine learning is one of the
most promising techniques in detecting mobile malware (Aafer
et al., 2013; Arp et al., 2014; Avdiienko et al., 2015; Chen et al.,
2016a; Dash et al., 2016; Fan et al., 2016; Feizollah et al., 2017;
Idrees et al., 2017; Meng et al., 2016; Rasthofer et al., 2014; Yang
et al., 2014, 2015; Zhang et al., 2014). However, machine learn-
ing approaches also have a weakness: they are susceptible to
adversarial countermeasures by attackers aware of their use.
First, through reverse-engineering, attackers may become aware
of classifiers and their parameters used to evade detection.
Second, more sophisticated attackers can actively tamper with
the classifiers by injecting well-crafted data into training data.
Therefore, with Android’s policy of open-source kernel, malware
writers can gain an in-depth understanding of the mobile plat-
form, hence intentionally alter the training set to reduce or
eliminate its detection efficacy.

To our knowledge, most up-to-date works using machine
learning mainly focused on detection accuracy and assumed
that feature extraction is considered in an ideal environment
(Chen et al., 2016c; Mariconti et al., 2017). No evasion tech-
niques were conducted in the feature space when using
machine learning-based detection approach. In this paper, we
consider a threat model within a specific class of attacks, named
poisoning attack, in which the attacker is assumed to control a
subset of samples or inject additional seeds at will in order to
mislead the learning algorithm. For example, in malware de-
tection, a sophisticated attacker may have a good command
of the whole training set and deliberately inject poisoning pat-
terns to compromise the performance of the classifiers, which
become more prone to misclassify malicious applications as
benign ones. This threat model conceptually underlies adversarial
machine learning: it involves gradients of the function f represented
by the learned model (e.g., SVM, logistic regression, K-Nearest Neigh-

bor) in order to evaluate it on an input x. Attackers can then fully
automatically either identify individual input features that are per-
turbed to achieve misclassification (Papernot et al., 2016).

To test the ramifications of these causative attacks, we
develop an adversarial model with three types of attackers ac-
cording to different aggressiveness of attacks to simulate the
real-world attacks.To do this, we adopt a customized adversarial
crafting algorithm, characterized by the aggressiveness of
attacks, to generate the crafted camouflage samples. The ab-
straction of crafting steps is somehow restricted in three ways.
(i) To preserve the functionality of the modified application, we
only add or remove features; (ii) we add a restricted number
of features. For simplicity, we therefore decide to add entries
to the AndroidManifest.xml and Smali files; (iii) since obscuring
semantic features is much more challenging than confusing
syntax features, we only use syntax features to craft samples.
In spite of these restrictions in crafting, we achieve a signifi-
cantly high misclassification rate on malicious applications
when using 564 original non-robust features.To further perform
a longitudinal comparison, we also apply our poisoning attack
to DREBIN (Arp et al., 2014), DROIDAPIMINER (Aafer et al., 2013), and
MAMADROID (Mariconti et al., 2017), the three most recent
machine-learning detection systems in academia. We thus vali-
date that the threat model and the poisoning attack are indeed
viable in malware detection. We conjecture that almost all the
state-of-the-art machine-learning malware detection systems
are suffering from the poisoning attack we exhibited in the
paper.

To handle these adversarial attacks, we propose KUAFUDET,
a learning enhancing defense system with adversarial detec-
tion that includes an offline training phase that selects and
extracts contributing features from the training set for pre-
processing, and an online detection phase that utilizes the
classifier trained by the first phase. Comparing to existing work,
these two phases act together, through a self-adaptive learn-
ing scheme, as an iterative adversarial detection process.
Additionally, we introduce the camouflage detection for verify-
ing false alarms to protect against poisoning attacks. By using
similarity analysis, the camouflage detection is applied to it-
eratively detect against malicious data distortion. In concrete,
we train 16,000 Android application samples that are equally
distributed, which are downloaded from Contagio Mobile
Website,1 Pwnzen Infotech Inc. and DREBIN (Arp et al., 2014). All
195 robust features are extracted using static analysis on the
given application, pruned by information gain.We further evalu-
ate the results on 4000 applications. Our best detection classifier
achieves up to 96% accuracy without adversarial environ-
ment, and by at least 15% accuracy when coping with the most
powerful attackers, along with both low false negatives. Fur-
thermore, we conduct an empirical evaluation on our test set
and select 1000 malware as samples out of the set of 10,400
malicious samples and scan them using KUAFUDET and other
industrial malware detecting tools, such as Kaspersky and
McAfee encapsulated in VirusTotal.2 The coverage of KUAFUDET

significantly outperforms these top-of-the-line antivirus
systems. Finally, we perform the entire process of KUAFUDET,

1 http://contagiominidump.blogspot.hk/.
2 https://www.virustotal.com/.
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using real-time streaming, on a server with 16 GB memory,
quad-core i7-4800MQ at 3.6 GHz, and 1 TB hard drives and show
that KUAFUDET is scalable and efficient.

In this paper, we make the following key contributions that
are fourfold.

1. We propose that poisoning attacks can be exhibited by three
types of attackers in the real world, ranging from weak,
strong, and sophisticated degrees. We hold evidence that
the real-world mobile malware dataset is able to truly reflect
three types of attackers we defined.

2. We adopt a customized adversarial crafting algorithm, se-
mantically characterized by the aggressiveness of attacks,
to generate the crafted camouflage samples using syntax
features to largely simulate the real-world attacks.

3. We show that our poisoning attack is able to mislead
DROIDAPIMINER (Aafer et al., 2013), DREBIN (Arp et al., 2014), and
MAMADROID (Mariconti et al., 2017), the three most recent
machine-learning detection systems in academia.

4. We propose a two-phase iterative adversarial-based detec-
tion, termed KUAFUDET, wherein similarity-based filtering is
used to identify the false negatives that are the camou-
flaged malicious applications, further reinforcing the
resilience of the malware detection system.

Our experiments show that attackers can also poison fea-
tures while preserving maliciousness, and our experiments
verify that the resulting fake variants with poisoned features
impaired discriminative classifiers and succeed in lowering the
detection score in a test environment. Other main findings are
as follows:

• We observe that different feature categories have differ-
ent impacts on crafted camouflage samples. The effect rate
of API call leads to greater perturbation than permission.

• We emulate the feature extraction for all types of features
that DREBIN used and find that DREBIN-used feature extrac-
tion is substantially more computationally complex and does
not necessarily boost the accuracy.

• We find that in the data-imbalanced (benign-malicious ratio)
environment, the accuracy of KUAFUDET gradually degrades
as we put in more benign applications, but the accuracy still
remains relatively high.

• We find that similarity-based filtering analysis and rela-
beling have an excellent performance to handle against
adversarial attacks.

To the best of our knowledge, this is the first paper to ac-
commodate a newly designed two-phase adversarial machine
learning mechanism into mobile malware detection to limit
the possibility of mimicry and poisoning attacks, and further
propose a learning enhancing system through adversarial de-
tection of Android malware.

The rest of the paper is organized as follows. Section 2
defines the research problem. Section 3 presents the motiva-
tions and challenges. Section 4 provides the system overview
followed by the implementation shown in Section 5. Section
6 summarizes experimental evaluation. Section 7 discusses limi-
tations. Section 8 surveys related work. Finally, Section 9
concludes the paper.

1.1. A note on ethics

In this paper, we are very aware of the potential impact on ma-
licious apps disclosure or exploited by other malicious third
parties. In particular, in order to illustrate this methodology,
the collection of mobile malware used and crafted was strictly
followed by the Privacy Policy of the Pwnzen Infotech Inc., and
conformed to the non-disclosure agreement (NDA) of the
Pwnzen Infotech Inc. Furthermore, to facilitate research on
mobile malware detection, we make the malicious Android ap-
plications (except those from Pwnzen Infotech Inc.) used in the
paper publicly available to other researchers under
http://nsec.sjtu.edu.cn/kuafuDet/kuafuDet.html, but no attempt
was made to provide data from Pwnzen Infotech Inc. for people
outside of our research group because of intellectual prop-
erty. Only Pwnzen Infotech Inc. authorized employees, using
internal computer systems from Pwnzen Infotech Inc., can have
access to the dataset. Finally, we informed the team of the
Pwnzen Infotech Inc. of the potential newly discovered mali-
cious apps in order to help Pwnzen Infotech Inc. improve the
quality of its products and services. We believe this study per-
forms an important public service, as it shows that even state-
of-the-art antivirus systems are somehow futile. Our ultimate
goal is to inform developers and users of such potential poi-
soning attack, so that more comprehensive countermeasures
can be taken in the future.

2. Problem definition: Adversarial
machine learning

We denote a sample set by x yi i i
n, ,( ) ∈( ){ } =X Y 1

, where xi is the
ith malware sample vector of which each component exhib-
its the selected feature; if xi has the jth component, then xij = 1;
otherwise xij = 0. yi ∈ {0, 1}, n is the total number of malware
samples, and X ⊆ { }0 1, m is an m-dimensional feature space.
In this paper, we consider binary classifiers with only two output
classes where the attacker crafts malware dataset to evade de-
tection and hence achieves his goals.The attacker tries to move
away malware dataset yi = 1 in any direction by adding a non-
zero displacement feature vector δi to xi yi =1. For example,
attackers may add good attributes to mobile malware to evade
binary classifiers. We note that attackers will not be able to
modify legitimate benign applications since an honest author
has no interest in having his benign application classified as
malware. Hence, crafting an adversarial sample x*, misclassified
by the function f (where f : x → y = f(x)), from a benign sample
x can be formalized as the following problem (Szegedy et al.,
2014):

x x f x f xx x* . . ,= + +( ) ≠ ( )δ δs t (1)

where δx = x is the minimal perturbation yielding
misclassification and f can be the corresponding softmax
function.

The goal of adversarial sample crafting in malware detec-
tion is to mislead the detection system, causing the
classification for a particular application to change according
to the attackers wishes. In this paper, we only focus on the
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poisoning attack that results in malicious behavior being
misclassified as benign (false negatives), because Inter-
Component Communication (ICC) analysis is used to reduce
false positives (Li et al., 2015; Octeau et al., 2016). We also
assume the attacker has full access to the classifier used, and
can inject as many variants’ features as possible at will to the
given classifier. For this reason, following Eq. (1), we further
denote xij

max =( )1 and xij
min =( )0 as the maximum and the

minimum values that the jth feature of the ith sample can take.
Then a poisoning attack can be characterized in the follow-
ing:

C x x C x x j m

C x
f ij ij ij f ij ij

f ij ij

min max , , ,−( ) ≤ ≤ −( ) ∀ ∈[ ]
= −( ) ≤ ≤

δ
δ

1

0 CC x j mf ij1 1−( ) ∀ ∈[ ], , ,
(2)

where Cf ∈ [0, 1] controls the aggressiveness of attacks. Cf = 0
indicates no attacks, while Cf = 1 indicates the most aggres-
sive attacks. To test the ramifications of causative attacks and
clearly elaborate the challenges, we develop an adversarial
model with three types of attackers with the corresponding
Cf values.

Weak attacker (Cf = 0.33). Our weak attacker is not aware
of the statistical properties of the training features or labels
at all. This attacker simply fakes additional labels with random
binary features to poison the training dataset.

Strong attacker (Cf = 0.67). Our strong attacker is aware of
the features we use for training and can have access to our
ground-truth dataset (which comes from public sources). This
attacker can manipulate partial features in the training data.
However, this attacker is resource constrained and cannot ma-
nipulate any mobile application statistics which would require
more time. The strong attacker crafts features by randomly se-
lecting publicly available Android malware and then faking
additional labels, so that the partial training labels can become
nearly identical.

Sophisticated attacker (Cf = 1). Our strongest attacker, named
sophisticated attacker, has full knowledge of our training feature
set. Additionally, this attacker has sufficient time and eco-
nomic resources to create arbitrary mobile application statistics.
Therefore, the sophisticated attacker can fully manipulate
almost all training features, which creates scenarios where rela-
tively benign mobile applications and real-world malicious
mobile applications appear to have nearly identical attri-
butes at the training phase.

To do this, we adopt the adversarial crafting algorithm
(Papernot et al., 2016) based on the Jacobian matrix

J
f f x

x
f

i

j i j m

= ∂ ( )
∂

=
∂ ( )

∂
⎡

⎣
⎢

⎤

⎦
⎥

∈{ } ∈[ ]

X

X
0 1 1, , ,

where f0(x) outputs x is benign and f1(x) outputs x is mali-
cious, with f0(x) + f1(x) = 1. To craft an adversarial sample, we
use 73 benign features and 102 malicious features detailed in
Section 5.1. We then take mainly two steps. In the first step,
we compute the gradient of f with respect to x to estimate the
direction in which a perturbation in x would change f’s output.
In the second step, we choose a perturbation δ of x with
maximal positive gradient into our target class Yy yi i= =0 1 denoted
y′, and we customize the adversarial crafting algorithm
(Papernot et al., 2016) according to our adversarial model with
three types of attackers (Cf), to indicate the probability (Eq. (2))
of adding a specific feature. After computing the gradient, we
iteratively choose a target feature of which the gradient is the
largest for our target class and then update its value in x to
obtain our new input vector. We then re-update the gradient
and repeat this process until either (i) we reach the bounded
allowed changes (loop bound) or (ii) we successfully achieve
a misclassification.

We didn’t attempt to formalize the malware detection as
an optimization problem, saying to maximize accuracy at the
lowest resource cost with minimal adversarial perturbations,
because simply using optimization may not be aligned with
how we semantically understand the human malicious be-
haviors and motivations. For future research, we wish to
generate an exact mapping rule between machine-crafted
mobile malware and read-to-use malicious apps in the wild,
and ultimately wish to provide a foundation for developing
sustainably-secure anti-malware systems in the face of dynamic
cyber-maneuvers.

3. Motivations and challenges

In this section, to highlight our contributions, we motivate our
malware detection model by incorporating adversarial envi-
ronment witnessed in the real world and then review several
challenges of our work.

3.1. Evolutionary chain

Fig. 1 describes an evolutionary chain of mobile malware ad-
vancements that has been observed along the timeline: ranging
from the seed explosion to the recent adversarial attack. Earlier
menaces of malware are mainly pertinent to compromised SMS
related functions. With every new technology comes abuse, the
Android market is no exception. Since 2014, malware samples
can be easily exploited by Android vulnerabilities, which heavily
drives an arms race for the adversarial detection of mobile
malware. As the nature of the attack is shifting from small-

Fig. 1 – A timeline of Android malware.
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scale and low-tech toward large-scale and skilled ones, the
additional efforts will have to be directed at taking targeted
strategies to detect stubborn malware.

3.2. Adversarial samples

In previous work (Chen et al., 2016a), a number of malware
samples in the dataset are misclassified into benign ones. We
zoom in these misclassified samples and witnessed several real-
world cases that reflect adversarial attacks from this dataset.
Each observation corresponds to the three types of attackers
defined above.

Weak attacker. Embedding a good portion of benign code
into a malicious app (e.g., manifest attributes and non-logical
code in java code). Felt et al. (2011) show that more than half
of Android applications are overprivileged, such as misusing
AndroidManifest.xml configuration. We carefully analyze the false
negative samples using mapping relations between permis-
sions and API calls, and find that some declared permissions
remain unused at the development stage.We can see from Fig. 2
that part of the code in the AndroidManifest file of Polaris Office
is misclassified as benign. Although #1 to #7 permissions are
declared, they have not been used at all since the app does not
demonstrate corresponding behaviors. These permissions ex-
tracted as features for training classifiers weakly mislead the
classification outcomes. As shown in Fig. 3, we delete redun-
dant code (#1–#7) that is irrespective of the logical behavior of

the sample. After we repeat the classification process, surpris-
ingly the sample is classified as malicious.

Strong attacker. Hiding a good portion of malicious code into
other formats in the application package. Some alternative ma-
licious applications use techniques such as dynamic loading
techniques to hide a good portion of malicious code into other
formats. Usually these malicious code blocks include sensi-
tive API calls. API calls used by most of machine learning
classifiers will dramatically lead to the misclassification. For
example, SecondLock behaves as same as “egdata” does. Some
malicious code blocks or executable files are hidden in the files
of other formats, such as jar, so, jpg, and data. These files
contain sensitive API calls, such as DownloadManager.enqueue
and DownloadManager.query, which are hidden by malware.
The“assets”folder of SecondLock contains a png format file,which
is not a standard png file and can be dynamically loaded. It
can prevent the application from updating or automatically
downloading other malicious applications. As shown in Fig. 3,
we show two steps to correct the classification results. In step
one, we remove five unused permissions, the result of classi-
fication moves toward the hyperplane, though the final result
remains benign. In step two, we add some sensitive API calls
that are hidden in the png file (e.g.,DownloadManager.enqueue
and DownloadManager.query).This particular sample is finally
classified as malicious.

Sophisticated attacker. Embedding benign logic code in
java code and dynamic code loading with reflection. A few
malicious applications add benign logic code in source code.
Benign logic code can be executed without any effects on
malicious behaviors, which is used to obscure the feature
extraction process to clone benign applications. This is similar
to “testing code.” By embedding benign logic code, the sophis-
ticated attacker can add any code blocks or any combination
of various techniques to mislead the machine-learning clas-
sifiers, making the classifiers less robust. Specifically, after
the construction of Activity transition relations for WhatsApp,
a repackaged malware from the third party rather than the
official version, we find there exist embedded activities,
standing alone with some methods, such as neither being
affected by any other activities nor shown up in the system
logic. Fig. 4 shows a code segment of WhatsApp with an
embedded activity, getMemoryLimited() method initiates a
system call to getMemoryClass(), getLargeMemoryClass(),
etc. However, these system calls extracted as features for
training cannot reflect system logic of the sample, which
seriously misleads the classification outcomes. We therefore
remove such embedded benign logic code and retrain the
classifiers. As shown in Fig. 3, once we delete such code step
by step, the malware sample is exposed. Fig. 3 also exempli-
fies that in the adversarial environment, the attack process is
changeable and dynamic.

Fig. 2 – A case of permissions overprivileged.

Fig. 3 – The process from benign to malicious: the black
dots refer to malicious apps, the white dots refer to benign
apps, and the gray dots are originally malware but
misclassified as benign due to the camouflage code
injected in the adversarial region. The gray dots turn
darker with the deletion of camouflage code and finally
turn all black, exposing its malicious nature. The arrows
direct toward the transformation process.
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The alternative approach that one sophisticated attacker
may take is through dynamic code loading. Dynamic code
loading usually utilizes reflection mechanism to modify the
runtime behavior of applications. It provides ability for so-
phisticated attackers to add malicious behaviors (malicious
features) without having to change the original application,
hence mislead the machine learning classifiers. For example,
as depicted in Fig. 5, sophisticated attackers can incorporate
two malicious methods in the class MaliciousMethodsInDex
(lines #1–#6) – sendDeviceInfo and sendCredential, and in-
stantiate them via DEXCLASSLOADER at runtime. Since the malicious
codes are loaded at runtime, and not part of the application
source, it is a challenge to classify them as malware through
machine-learning classifiers.

3.3. Challenges

Class imbalance. We aim to train a classifier that produces
binary predictions: each mobile application is classified as
either benign or malicious. If there are significantly more
malicious applications in one class than in the other class,
this biases the output of supervised machine-learning algo-
rithms. Prior research treats it simply by using 49 different
malware families (Zhou and Jiang, 2012). In consequence, our
dataset exhibits a modest class imbalance. We first define
217 Android malware families and then classify them into
eight categories, such as Expense, Fraud, Payment, Privacy,
Remote, Rogue, Spread, and System (see Table 1), to present a
systematic characterization of existing Android malware.

The eight malware categories represent almost all coverage
of existing Android malicious behaviors. We observe that it is
common that many malware families belong to multiple
categories in parallel. This phenomenon indicates that mali-
cious family is not limited to a single malicious behavior. As
shown in Table 1, Privacy and Fraud occupy the highest
proportions among all. Therefore, we are able to find the
reasonable distribution of our real-world malware during our
data acquisition. As the ratio of malware to benign apps in
the real world is highly imbalanced, this class imbalance
usually represents a significant challenge for reducing false
negatives.

Quality of ground-truth dataset. Prior work on malware
dataset focused on validating their approaches by using a small
out-dated dataset.These predictors can be used as ground truth
for training high-performance classifiers. In contrast, there is
no comprehensive dataset of malware that is available in the
real world. We employ as ground truth the set of malware from
five different platforms. In particular, the set obtained from
Pwnzen Infotech Inc. is the most recent malware in the real
world. However, we acknowledge that this dataset does not
cover all platforms uniformly.

4. System overview

In this section, we provide a high-level overview for our system
design.

Fig. 4 – A case of Activity embedded with benign API calls.

Fig. 5 – A loading example of using reflection (demonstrated as dynamic pseudo code).
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4.1. Key ideas

In putting our approach in practice for massive-scale detec-
tion, we aim to achieve two important goals: one is to identify
and filter the suspicious false negatives (i.e., the malicious ap-
plications that are camouflaged), the other is to achieve accuracy
and scalability at the same time. To achieve these two goals,
we propose two key techniques: similarity-based filtering and
two-phase iterative adversarial detection, as shown below.

(i) An automated similarity-based approach to filter sus-
picious false negatives. In general, attackers have two
characteristics: first, attackers may acquire dual intrin-
sic attributes of applications, thus we assume the
suspicious ones are the ones with both strong reflec-
tion on malicious features and benign features; second,
in our threat model, attackers may have certain level of
knowledge of training set, thus we decouple the simi-
larity metrics from machine-learning classifiers. Based
on these two characteristics, if the trained classifier could
incorporate the similarities across the applications in the
training set to lead to a further fine-grained detection,
the learning system would be periodically enhanced with
these newly discovered malware and suspicious false
negatives.

(ii) A two-phase iterative adversarial detection approach to
achieve accuracy and scalability. False negatives can be
reduced based on our understanding of an attacker’s

threat level. Thus self-adaptive learning (SAL) scheme,
where the suspicious false negatives, as well as the iden-
tified malicious applications, are fed back to the training
process for a desired trade-off between accuracy and
scalability.

4.2. Overall architecture of KUAFUDET

The overall architecture of KUAFUDET is shown in Fig. 6, which
is comprised of two intertwined phases. In the Training Model
phase, KUAFUDET extracts features from labeled applications
based on our combined set of contributing features, trains clas-
sification model offline, and updates classifiers at a certain
interval of time; In the Online Detection phase, KUAFUDET clas-
sifies large sets of online Android applications (from multiple
online Android markets) into different categories, benign and
malicious; Meanwhile, KUAFUDET, through a Self-adaptive Learn-
ing scheme, discovers new information from both the identified
malware and the filtered suspicious false negatives from Cam-
ouflage Detector, and incorporates them into Training to
stabilize the detection accuracy (Fig. 7).

Table 1 – Malware category.

Malware category Percentage

Privacy 47.1%
Fraud 33.9%
Rogue 20.1%
Spread 20.1%
System 11.1%
Remote 10.6%
Expense 10.1%
Payment 6.3%

Note: We take a look at malware category with miscellaneous
datasets.We find that many Android malware families belong to mul-
tiple malware categories, thereby the sum of percentages is greater
than 100%.

Fig. 6 – The KUAFUDET framework through adversarial detection.

Fig. 7 – Choosing very benign and malicious outcomes.
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5. System design

In retrospect, the quality of discriminative classifier is the key
to the accuracy of malware detection. On one hand, when the
trained classifier is trained once and used for all time, it is not
able to correspond to the new malware. On the other hand,
aggressive attackers may obfuscate their representations in
terms of contributing features to impair discriminative clas-
sifiers. Thus it might lead to high false negatives that the
malicious applications evade detection. In order to perform ac-
curate and scalable adversarial detection, our proposed
adversarial detection approach contains two phases, training
and detection, intertwined by the self-adaptive learning (SAL)
scheme. In particular, we conduct our similarity-based analy-
sis in Camouflage Detector to filter the suspicious false
negatives.

The implementation of KUAFUDET involves the following steps:

1. In the feature selection stage, we decompile APKs to gen-
erate Smali code via Apktool,3 we extract 195 out of 564
features using manual pruning along with information gain
validated.

2. In the training stage, we use different machine-learning clas-
sifiers, such as Support Vector Machine (SVM), Random Forest
(RF), and K-Nearest Neighbor (KNN), based on 195 dimen-
sional features we selected.

3. In the camouflage detection stage, we perform similarity-
based filtering to identify the false negatives that are the
camouflaged malicious applications.

5.1. Feature selector

The features considered in this study are classified into two
categories: syntax features ( S PERM INT H API, , ,{ } ) and semantic fea-
tures ( ′{ }S Sequence ).

5.1.1. Syntax features
Through closely examining more than 250,000 applications from
various sources (breakdowns shown in Section 6.1), we notice
that the malicious applications tend to have drastically dif-
ferent permissions, intents, hardwares and API calls, which
support the assumption that malicious applications are dis-
tinguishable from benign ones. To facilitate reading, we show
a coarse-grained description of syntax features used in this
paper.

• Permission ( S PERM{ }): Each APK has an AndroidManifest file
in its root directory, which is an essential profile including
information about the application. Android OS must process
this profile before it runs any installation. The profile file
declares which permissions the application must have in
order to access protected parts of the API and interact with
other applications. It also declares the permissions that
others are required to have in order to interact with the ap-
plication’s components.

• Intent ( S INT{ }): Communication between different compo-
nents is mainly through intent, which can be regarded as
the “medium” where information about massive asynchro-
nous data exchange and calls to different components is
shared between different components and applications.

• Hardware ( S H{ }): Features about requesting access to spe-
cific hardware of the smartphone should be declared in the
manifest file, such as NFC and GPS, since the combination
of such hardware modules may have harmful impact on the
phone.

• API Call ( S API{ } ): Android API calls monitoring, based on the
reverse engineering, can monitor those API calls, such as
sending SMS, accessing user location, and device ID. The
Android platform provides a framework API that applica-
tions can be used to interact with the underlying Android
OS. The framework API consists of a core set of packages
and classes. Most applications use a fairly large number of
API calls.

Here, we use statistical metrics-driven manual pruning (Chen
et al., 2016a) with information gain to cross-check the feature
selection. Although information gain facilitates the auto-
matic feature selection, it ignores the class information and
distribution of the features. When these features are used
to detect malware, the performance would drop down
dramatically. For example, READ_INPUT_STATE (resp.
ACTION.SET_WALLPAPER) corresponds to Permission (resp.
Intent) exhibits a high information gain than many others but
it relates to only a small subset of malware. Such highly spe-
cific features are undesirable for classification. In summary, we
generate 175 types of syntax features.

# # # #S S S SPERM INT H{ } { } { }+ + +∩ ∩ ∩� ���� ���� � ���� ���� � ��� ���
61 12 5

AAPI

PERM INT H API

{ }

{ }

∩� ���� ����

� ������������������ 	���

97

S , , ,
���������������

∑ .

5.1.2. Semantic features
The semantic feature ( ′{ }S Sequence ) represents malicious behav-
iors that occur sequentially, which are extracted via static
analysis. For instance, the sequence (DownloadManager, Uri,3 http://ibotpeaches.github.io/Apktool/.

Table 2 – Features.

Syntax features Semantic features

Permission Intent and hardware API Call Sequence

READ_PHONE_STATE INTENT.ACTION.DELETE URL.openConnection (chmod 777, Runtime, getRuntime, exec)
WRITE_SMS INTENT.ACTION.GET_CONTENT TelephonyManager.getDeviceId (getDeviceId, URL, openConnection)
INSTALL_PACKAGES HARDWARE.TOUCHSCREEN PackageManager.checkPermission (DownloadManager, Uri, Request, enqueue)
… … … … … … … …
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Request, enqueue) in Table 2 indicates that a download request
requires to follow a certain order: construct a request object
and transfer the URL of the file to enqueue method to finish the
download process. These sequences can characterize some in-
teresting malicious behaviors that cannot be captured by the
syntax features and can reflect the malicious behaviors more
explicitly for a large number of apps, with the purpose of train-
ing classifiers. We de facto take several sensitive behaviors into
consideration, such as “Send SMS,” “Request for chmod,”
“Uninstall application,” “Get location,” “Get wifi info,” and “Start
http connection.” We then extract the sequence of key strings
that reflect interesting malicious behaviors. For example, re-
questing for chmod is described as the sequence of “chmod
777,” Runtime, getRuntime, and exec, we define 20 types of se-
mantic features for detecting malware. By generating Android
malware, these semantic features can be extended.

# .′{ }∑ S Sequence∩� ����� �����
20

To characterize each of the applications using static analy-
sis, we generate a final set of 195 out of 564 types of features,
as partially shown in Table 2. In summary, we use 195-
dimensional feature vectors for the study (breakdowns shown
in Table A.11).

5.1.3. Justifying feature selection
In DREBIN, the feature set contains thousands of arbitrary strings
that appear in the manifest file or in the disassembled code
of the app chosen by developers. In particular, DREBIN extracts
eight types of features: hardware components, requested per-
missions, app components, filtered intents, restricted API calls,
used permissions, suspicious API calls, network addresses.These
massive features chosen from this dataset act as noises, mis-
leading the classifier. We readily emulate the feature extraction
for all types of features that DREBIN used since DREBIN authors
do provide the feature vectors of their own dataset for evalu-
ation by other researchers. As shown in Table 3, we use DREBIN

dataset (Arp et al., 2014), massive DREBIN-used features, and
simulate his algorithm. We conclude that extracting DREBIN-
used features was a substantially more computationally
complex process than our feature selection due to the sheer
number of features extracted. In fact, these features do not nec-
essarily boost the accuracy. Our approach also validates that
195 types of features used in KUAFUDET are proper and will not
trigger the classical curse of dimensionality.

5.2. Machine learning classifiers

With these 195-dimensional features that result from our
feature selector, we utilize a number of popular algorithms

widely used in security contexts, including Support Vector
Machine (SVM), Random Forest (RF), and K-Nearest Neighbor
(KNN). We leverage existing implementations of these algo-
rithms in WEKA (Hall et al., 2009). In particular, SVMs seek to
determine the maximum margin hyperplane to separate the
classes of malicious and benign applications. When a hyper-
plane cannot perfectly separate the binary class samples based
on the features we fed in, we then tune the parameters such
as regularization penalty and non-negative slack variables. We
also perform multiple rounds of stratified random sampling
due to the data imbalance as stated in Section 3.3. Random
Forest (RF) and K-Nearest Neighbor (KNN) are also tuned in an
analogous manner.

5.3. Camouflage detector

To further discover camouflage in malware, we manually pick
a fair number of applications from the farthest very benign out-
comes and very malicious outcomes from the classification
hyperplane, respectively. In particular, these three machine-
learning algorithms use the corresponding distance to
classification hyperplane. And those hand-picked applica-
tions are the most benign and most malicious predictions and
would be updated along with training set updating. We assume
these applications have not been poisoned by any malicious
third parties. We then measure the similarity between the train-
ing set and the selected most benign applications, and vice versa
the selected most malicious applications after classification.
By further tuning the similarity threshold, we relabel the cam-
ouflage malware of the training set as malicious samples to
make the classifier robust. Moreover, based on similarity analy-
sis, we are able to identify the camouflage malware from false
negatives. Our similarity-based approach is based on ex-
tracted robust features and those non-bypassed samples that
are farthest from the hyperplane.

5.3.1. Measuring similarity
We use Jaccard index, Jaccard-weight similarity, and Cosine simi-
larity to measure the similarity of applications. The similarity
indices are characterized by two vectors A and B, where A rep-
resents the feature vectors of the applications in the training
set and B represents the feature vectors of hand-picked (the
most benign or the most malicious) applications. The similar-
ity indices used in this paper are the following:

Jaccard index: The Jaccard index, denoted by J(·), is defined
as the size of the intersection divided by the size of the union
of the sample sets A and B:

J A B
A B
A B

A B
A B A B

, .( ) = ∩
∪

= ∩
+ − ∩

Jaccard index is not accurate enough because it does not
reflect the actual differences of frequencies. For example, an
API is used 10 times and 100 times respectively in two
applications, but the Jaccard distance simply treats them
equally.

Jaccard-weight similarity: The Jaccard-weight similarity is
defined as follows, which is computed by two steps.

Table 3 – Comparison of consequential features (using
DREBIN dataset).

Detection tool within features used Accuracy

195-dimensional features used in KUAFUDET 96.55%
564-dimensional features used in KUAFUDET 95.80%
5000 features used in DREBIN 94.05%
500,000 features used in DREBIN 93.90%
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Step 1. The weight of each component of the feature vector
Jf is defined as the percentage that the number of apps which
exhibit that feature over the total number of apps.
Step 2. For any two app a ∈ A and b ∈ B, we consider if both
the kth component of feature vectors are non-zero, that is
ak = bk = 1, where ak and bk denote the kth component of
feature vectors of apps a and b, respectively. We collapse
the Jaccard-weight similarity W(a, b) as follows:

W a b
J a b

J

f
k k k

k

n

f
k

k

n,( ) =
= =( )=

=

∑
∑

1
1

1

where n = 175 is the dimension of features and ⋅( ) is the in-
dicator function.

Cosine similarity: The cosine similarity, denoted by cos(θ),
is defined using a dot product of the two vectors A and B divided
by the product of their magnitudes as:

cos .θ( ) = ⋅A B
A B

We use Jaccard index (J), Jaccard-weight similarity (W), and
Cosine similarity (C) to measure the similarity of applica-
tions. If the similarity between two applications exceeds a
certain threshold, the application will be selected as a malware
candidate and fed back to the training process for further fine-
grained detection. We want to select as many malware

candidates as possible for periodically retraining the classifi-
ers. To be specific, a low threshold likely leads to high false
negatives, while a high threshold leads to low false
negatives. As shown in Fig. 8, during our experiments, we em-
pirically choose parameters J J JT T1 2< < , W W WT T1 2< < , and
C C CT T1 2< < as corresponding thresholds and then take the
union of three outcomes for picking the camouflage malware.
From an attacker’s perspective, in order to evade the detec-
tion, the fraction of two sets A and B must be below a given
threshold 0 < p < 1 for Jaccard index: A B p A∩ ≤ × and
A B p B∩ ≤ × . An optimal attack strategy is to schedule a

group of accounts according to the set of such action sets A
or B that has the maximum cardinality so as to minimize the
probability that two accounts are caught. But finding A with
the maximum cardinality remains an open problem in inter-
section set theory (Brunk, 2009), which poses a limitation to
the attacker.

6. Experimental evaluation

We evaluate KUAFUDET with applications downloaded from dif-
ferent popular third-party Android markets, as well as in real
industrial environments such as Pwnzen Infotech Inc.The goals
are to evaluate our system in aspects of: (i) the robustness of
our detection under three attacks; (ii) the capabilities of ac-
curately detecting malicious applications; (iii) the efficiency and
scalability of real-time analysis, and adaptability to new Android
malware; and (iv) the capabilities of detecting coverage.

6.1. Experimental dataset

As mentioned earlier, most studies lack a large number of data
samples. We fulfill the need by presenting the first large col-
lection of 252,900 Android application samples, including 10,400
malicious samples, which covers the majority of existing to
recent ones, as shown in Table 4. Specifically, these 252,900 APK
files we collected consist of 242,500 benign applications that
are downloaded from Google Play Store, and the other 10,400
malicious APK files where 1260 have been validated in Zhou
and Jiang (2012) and the remaining are downloaded from
Contagio Mobile Website (340 APKs), Pwnzen Infotech Inc. (4500
APKs) and Arp et al. (2014) (4300 APKs). Our malicious appli-
cations include all varieties of the threats for Android, such
as phishing, trojans, spyware, and root exploits. In the follow-
ing, we randomly select various portions of benign apps and
malicious apps (various ratios of # benign vs # malicious) for
different experimental goals. Specifically, we select 1000
malware as samples out of the set of 10,400 malicious samples

Fig. 8 – Similarity analysis.

Table 4 – Datasets for adversarial detection of Android malware.

Source Universal Data-driven Analysis Training Test Comparison

Benign 242,500 10,000 8000 2400 0
Malicious Pwnzen Infotech Inc. 4500 4500 3500 1000 600

Zhou and Jiang (2012) 1260 1000 1000 260 150
Arp et al. (2014) 4300 4200 3200 700 150
Contagio 340 300 300 40 100

Apps 252,900 20,000 16,000 4000 1000

335c om pu t e r s & s e cu r i t y 7 3 ( 2 0 1 8 ) 3 2 6 – 3 4 4



and scan them using KUAFUDET and other industrial malware
detecting tools. For comparison, the 1000 samples contain both
benchmarks before 2014 and the most recent datasets, more
than half of which are the most recent malware.

Finally, we measure the efficiency and scalability of KUAFUDET

performance, and perform the entire process of KUAFUDET, using
real-time streaming, on a server with 16 GB memory, quad-
core i7-4800MQ at 3.6 GHz, and 1 TB hard drives.

6.2. Experimental results

For a meaningful comparison, we list the results that are used
to train on different classifiers with respect to the aspects of
false negative (denoted as FN) and accuracy. FN rate refers to
all malicious instances that are classified as benign applica-
tions. Accuracy simply measures that the classifier makes the
correct prediction. Because we use our classifier as a tool for
prioritizing the response to Android malware disclosures, we
focus on improving the accuracy and reducing the false
negative.

6.2.1. Evaluation on attacks against the detection
Our collected dataset (16,000 samples as a training set and 4000
samples as a test set, shown in Table 4) serves as a bench-
mark for evaluating robustness of Android malware detection
systems. As mentioned, DROIDAPIMINER, DREBIN, and MAMADROID

are the three most recent Android malware detection systems.
Since Support Vector Machine (SVM) is the only jointly-used
algorithm by three detection systems, to conduct a fair com-
parison, we adopt SVM to investigate the misclassification rate
of the three detection systems together with ours (when the
adversarial detection mechanism is not included) under poi-
soning attacks. We first show that by poisoning their training
set, it is possible to mislead their classifiers, along with ours;
we then analyze the robustness of our discriminative classi-
fiers against the three distinct attack strategies.

(i) Misclassification of Machine Learning Detection Systems.

To perform a longitudinal study, we first apply our poison-
ing attack to DROIDAPIMINER, DREBIN, MAMADROID, and KUAFUDET

without adversarial detection (Without AD). Specifically, Without
AD means that the camouflage detector component is dis-
abled. We mimic sophisticated attacks to investigate how
ineffective these systems perform under our poisoning attack.
We assume to have control over a subset of samples and au-
tomatically generate the crafted camouflage samples as follows:
(i) We can only add or remove features. We must preserve the
utility of the modified application, which we achieve by only
adding features from benign set, and only those that do not
interfere with the functionality of the application. (ii) We can
add a restricted number of features. We thus validate that
adversarial attack is indeed viable in security critical domains.

More specifically, we customize the adversarial crafting al-
gorithm (Papernot et al., 2016) according to our adversarial
model, to indicate the probability of adding or removing a spe-
cific feature. Therefore, for machine-learning mechanisms that
are based on syntax features, such as DROIDAPIMINER and DREBIN,
we can directly apply our customized adversarial crafting al-
gorithm; for machine-learning mechanisms that mainly
consider semantic and behavioral features, such as MAMADROID,
which relies on application behavior using Markov chain mod-
eling, we instead target on crafting its feature in terms of call
sequences. Specifically, we first extract a set of call sequences
that are only frequently used by benign samples, and then add
them to the malicious samples, to mimic our sophisticated
attack.

As shown in Table 5, we obtain 80.05%, 75.20%, and 68.95%
misclassification rates (i.e., FN) on DROIDAPIMINER, DREBIN, and
MAMADROID, respectively. We show that our poisoning attack on
SVM is successfully validated through three machine-learning
tools.

We here take a detailed discussion on the misclassification
rate of the systems:

• Our sophisticated attackers are able to mislead the machine
learning detection systems.

• MAMADROID relies on transitional call sequences, rather than
single API calls, to train its classifier, merely inserting syntax
features as we did for poisoning other systems is not con-
sidered as a successful attack by our crafting algorithm. We
thereby manipulate its feature space through call sequences.

• MAMADROID achieves lower misclassification rates than DREBIN

and DROIDAPIMINER in the sophisticated attacks, sacrificing
more computational time cost over each application due
to call graph construction and feature extraction. Further-
more, MAMADROID requires a sizable amount of memory when
performing classification because of its large feature sets
and the extraction of call graph.

• KUAFUDET (Without AD) also can be attacked through so-
phisticated attacks and the misclassification rate (62.60%)
indicates that it still suffers from adversarial samples.

• DROIDAPIMINER, DREBIN, and MAMADROID can be thwarted if we
embed native code (as a strong attacker defined in our threat
model) and dynamic code loading with reflection (as a so-
phisticated attack), because malicious code is loaded or
determined at runtime. The attackers can pollute training
data using a large-scale crafted samples through these
techniques.

In conclusion, the state-of-the-art machine learning-
based malware detection systems are possible to be misled by
the poisoning attacks we exhibit in the paper. By their nature,
classifiers based on syntax features are more vulnerable than
the ones based on semantic features. On the other hand, se-
mantic features extraction does require more computational
costs than syntax features. Hence, statistical robust features,

Table 5 – Misclassification rate comparison of adversarial detection.

Detection Tool DroidAPIMiner Drebin MaMaDroid KuafuDet (Without AD)

Misclassification rate (FN) 80.05% 75.20% 68.95% 62.60%
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pruned by information gain, are adopted in KUAFUDET to ac-
commodate scalable, generic, and large-scale malware detection.
In addition, KUAFUDET provides specific mechanisms to coun-
termeasure the dynamic loading and native code embedding
poisonings. KUAFUDET parses the native code and dynamic code
from package, and then extracts the corresponding features
to keep the robustness of classifiers.

In summary, we conjecture that almost all the state-of-
the-art machine learning-based malware detection systems are
suffering from the poisoning attack we exhibited in the paper.

(ii) Robustness of KUAFUDET.

Here, we analyze the robustness of our discriminative clas-
sifiers when encountering three distinct attack strategies. The
first attack strategy is to launch a causative attack without any
knowledge of the training data or ground truth. This weak at-
tacker in principle amounts to injecting noise into the system.
The second attack strategy corresponds to the strong attacker,
who only manipulates partial features in the training set. The
third, the most aggressive attacker we consider is the sophis-
ticated attacker. This attacker can fully manipulate almost all
training features to launch a sophisticated attack, which creates
scenarios where relatively benign mobile applications and real-
world malicious mobile applications appear to have nearly
identical attributes at the training stage.

As shown in Table 6, the weak attacker is not able to force
the accuracy of our malware detection below 90%. This sug-
gests that discriminative classifiers can be relatively robust to
this type of random noise-based attack. When dealing with the
strong attacker, performance degrades to approximately 90%
accuracy. The sophisticated attacker can cause the accuracy
to drop to approximately 65% by incorporating thousands of
training set (green bar in Fig. 9). The sophisticated attacker rep-
resents a practical upper bound for the accuracy loss that a
realistic attacker can inflict on our detection system. We see
that injecting carefully crafted data into training data can sig-
nificantly reduce detection accuracy. However, with the help
of adversarial detection, holistic performance upgrades by at
least 15% accuracy with respect to each listed classifier. Hence,
performance of our adversarial detection remains above base-
line levels listed in Meng et al. (2016) even for our strongest
attackers due to the use of similarity-based filtering to in-
crease classifier robustness. Analysis on false negatives has an
analogous interpretation (see Fig. 10). As shown in Table 6, the

algorithm KNN outperforms other algorithms under adversarial
environment because of its higher resistance to random clas-
sification noise, which is aligned with the conclusion drawn
from the recent research (Wang et al., 2017).

Fig. 11 displays scatter-plots of system accuracy ((TP + TN)/
(TP + TN + FP + FN)) as a function of the size of randomly crafted
datasets, where TP and TN denote the number of samples cor-
rectly classified as malicious and benign, respectively. FP and
FN indicate the number of samples mistakenly identified as
malicious and benign, respectively. To ease presentation, the
plots are fitted by Loess curves with 95% confidence interval
bands that depict the upper and lower confidence bounds for
all points within the range of data, making it especially useful
for comparing groups for which no theoretical models exist.
As can be seen from Fig. 11, as the dataset size grows, the ac-
curacy drops slightly. This is somewhat expected as more
potential evasion takes place. Furthermore, as discussed earlier,
KuafuDet offers significantly better robustness of detection ac-
curacy, regardless of either the size of the dataset or the type
of classifier applied. Analysis on the robustness of recall has
an analogous interpretation.

Table 6 – The performance of adversarial detection.

Conventional Detection SVM RF KNN

FN 4.90% 2.50% 3.40%
Accuracy 94.95% 96.35% 95.80%

Attacker Weak Strong Sophisticated Weak Strong Sophisticated Weak Strong Sophisticated

Without AD SVM RF KNN

FN 8.60% 49.80% 62.60% 5.60% 41.80% 55.90% 5.90% 26.20% 45.40%
Accuracy 93.10% 72.50% 64.30% 94.80% 76.40% 67.85% 94.55% 84.40% 72.00%

Within AD SVM RF KNN

FN 5.80% 10.00% 12.60% 4.70% 11.20% 14.50% 4.10% 9.20% 11.60%
Accuracy 94.50% 92.40% 89.30% 95.65% 92.00% 88.85% 95.45% 92.90 90.45%

Fig. 9 – Detection accuracy.
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6.2.2. Evaluation on accuracy
We hereby compare our work with the previous work with
respect to accuracy. We opt to apply a large portion of our
dataset used in KUAFUDET, which intergrates the dataset owned
by DREBIN (Arp et al., 2014) and STORMDROID (Chen et al., 2016a),
in order to evaluate accuracy performance. Because the dataset
used in DROIDAPIMINER and MAMADROID are not publicly avail-
able, to be fair, we do not apply the dataset that is not even
used in DROIDAPIMINER and MAMADROID per se to them to have
an asymmetric advantage over it. Hence, DREBIN and STORMDROID

are only considered. As shown in Table 7, our accuracy rate
(96.35%) completely outperforms the accuracy rate in STORMDROID

(93.80%) (Chen et al., 2016a) and Drebin (93.90%) (Arp et al., 2014),
let alone use our combined dataset.

As evidenced by Table 7, we achieve the highest accuracy
because of the feature selection and similarity-based filtering.

6.2.3. Robustness of imbalanced data
Our experiments aim to evaluate the robustness of KUAFUDET

when the ratio goes imbalanced in the adversarial environment.

To evaluate the robustness of KUAFUDET in the data-imbalanced
environment, we first apply 4000 malicious and 4000 benign
apps (i.e., 1:1 ratio) for training our classifiers, and gradually
add benign ones to achieve different ratios up to 1:50. To be
specific, we conduct experiments with ratios including 1:1, 1:5,
1:10, 1:20, and 1:50. We use 10-fold cross-validation in our ex-
periments. As shown in Table 8, the accuracy degrades as we
approach real-world ratio of malware and benign apps, but the
accuracy still remains above 90%. In the self-adaptive scheme,
we, nevertheless, show the capability to tackle the problem of
the imbalanced data ratio.

6.2.4. Evaluation on time cost, scalability, and adaptability
To support a high-performance malware detection, KUAFUDET

is designed to run on top of an open-source distributed stream-
processing engine Storm.4 KUAFUDET supports a large-scale
detection of a data stream by a set of worker units that connect
to each other, forming a topology: A submitted application is
first disassembled to extract its features; then, the metrics-
driven pruning and information gain analysis are run, and two-
phase iterative adversarial detection is finally activated. Each
operation here is delegated to a worker unit on the topology
and all the data associated with the application are in a single
stream. Running on top of the Storm stream processor, KUAFUDET

is tested on the platform of Pwnzen Infotech Inc. We show that
the size of the test group is unaffected with the efficiency of
our tool. As shown in Table 9, average detection time per ap-
plication is less than 3 seconds, which is indeed capable of
scaling up to the massive datasets.

6.2.5. Evaluation on coverage
To circumvent the over-fitting issue and to better understand
the coverage of KUAFUDET, we randomly sample 1000 mali-

4 http://storm.apache.org/.

Fig. 10 – Detection false negatives.

Fig. 11 – The robustness of KUAFUDET (accuracy).

Table 7 – Accuracy comparison.

Detection Tool Accuracy # Malware

KUAFUDET 96.35% 10,400
DREBIN 93.90% 5,560
STORMDROID 93.80% 3,620

Table 8 – Results for different malware to benign apps
ratios.

Ratio 1:1 1:5 1:10 1:20 1:50

Accuracy 96.40% 96.15% 95.80% 94.60% 93.75%

Table 9 – Time cost of KUAFUDET in units of seconds.

# APKs Total time AVG time/APK

200 518 2.59
400 1066 2.67
600 1578 2.63
800 2097 2.62
1000 2778 2.78

338 c om pu t e r s & s e cu r i t y 7 3 ( 2 0 1 8 ) 3 2 6 – 3 4 4

http://storm.apache.org/


cious applications from 217 Android malware families from our
dataset to cover almost all the existing Android malicious be-
haviors. We scan them using KUAFUDET and other well-known
industrial malware detection tools, such as Kaspersky and
McAfee encapsulated in VirusTotal. Although the coverage of
KUAFUDET, with the combined top features, is 96.20%, better than
what can be achieved by any individual scanner, including such
top-of-the-line antivirus systems as ESET-NOD32 (79.50%),
McAfee (75.50%), Ikarus (72.50%), Kaspersky (72.10%), and Avira
(69.30%), industrial tools deal with millions of applications, many
of which are zero-day. We argue that comparing with indus-
trial tools is to understand the different emphases in academia
and industry. The breakdowns of the coverage study is pre-
sented in Table 10.

Since KUAFUDET decouples the similarity-based filtering from
machine-learning classifiers, it enables us to periodically
enhance the learning system. Moreover, KUAFUDET also consid-
ers an attacker threat dimension, which makes the whole
system design completely adaptable to new malware.

7. Discussion

Our study is limited in five ways as discussed in the following.

(i) The granularity of classifiers. The hyperplane between
benign and malicious can be blurred and subjective,
which depends on specific security requirements and
uses cases to determine whether a pattern is really
benign or malicious. For example, if individual users root
their own devices and use the game hacking applica-
tions, game developers are very likely to treat them as
malicious because they bypass the in-app purchase. In
practice, this kind of apps is defined as “grayware” that
has no clear distinctive difference between the benign
and the malicious. “Grayware” is now becoming a great
threat to mobile devices since attackers achieve more
profit in this way. KUAFUDET is a generic and coarse-
grained architecture for classifying applications with high
accuracy. As for such grayware, KUAFUDET can be tuned
for a specific detection.

(ii) The limitation of decompilation technologies. We extract
features from the manifest and Smali files that are suc-
cessfully decompiled. However, in our experiments,
we find that a few APK files cannot be decompiled

successfully. As for this situation, we change the
decompiling tool in our experiments. For future study,
we will explore the possibility to use reinforcement tech-
niques to prevent the APKs from reverse-engineering.This
would increase the difficulty of unpacking the original
APK for attackers.

(iii) The scarcity of empirical samples. Although we find
some case studies reflecting the different attacker levels
for machine learning classifiers, we still lack a huge
number of samples to scrutinize. We note attackers
might be able to deliberately force the benign and
malicious access patterns to co-occur in one log, such
as triggering the benign pattern first and then launch-
ing the attack, though we have not observed in the
wild. This perhaps requires to dilute the poisoned logs
and possibly requires human analysts to contribute
external knowledge. We hope in future study that
using Game Theory is beneficial to our interpretation
of the attackers psychology so as to take targeted
strategy to detect stubborn malware.

(iv) The limitation of selected features. Although the 195 fea-
tures are representative and extracted by using statistical
metrics-driven manual pruning with information gain
in our experiments, new malicious behaviors might
disturb the feature space, making the system less
effective.

(v) The limitation of similarity-based approach. (1) Attack-
ers can somehow approximate our similarity-based
approach by inferring the similarity thresholds used.
However, it is actually difficult to infer our selected
samples that are used to calculate the thresholds. Fur-
thermore, the thresholds will change as selected samples
update over time, for which attackers will take great
efforts to exploit. (2) KUAFUDET, through a self-adaptive
learning scheme, discovers new information from both
the identified malware and the filtered suspicious false
negatives from camouflage detector.We acknowledge that
this process would cause false positives. For example,
SMS-related applications are benign applications, but they
also have sensitive behaviors that are typical in Android
malware.

8. Related work

Contemporary machine learning-based techniques typically
model the detection problem as a binary classification problem.
Together with system analysis techniques, the malicious be-
haviors can be studied and employed to increase their detection
performance, especially for mobile applications in the wild.

8.1. Machine learning-based detection

Arp et al. (2014) built the DREBIN system, which works with a
massive feature set extracted from the manifest file and the
app’s source code and trains an SVM classifier for malware de-
tection. Although DREBIN has accommodated thousands of
features with an impressive performance results, it suffers two
challenges: first, the malware is out-dated and well recorded

Table 10 – Coverage comparison.

Detection Tool Percentage

KUAFUDET 96.20%
ESET-NOD32 79.50%
McAfee 75.50%
Ikarus 72.50%
Kaspersky 72.10%
Avira 69.30%
VIPER 67.50%
Qihoo-360 62.30%
Symantec 40.40%
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in malware detection tools; second, a comprehensive cover-
age of different attacking and evasion techniques is missing.

DROIDAPIMINER (Aafer et al., 2013) mainly extracts the top 169
API calls, which are used more frequently in the malware than
in the benign set, package level information, as well as some
dangerous parameter information as features to analyze a large
corpus of Android malware. Because of the evolution of both
malware and the Android API, it requires constant retraining
on most common calls.

Most recently, Chen et al. (2016c) suggest the use of se-
mantic features of mobile apps to retain classifier value over
time, building on the intuition that certain semantic attri-
butes of mobile malware are invariant. Experiments verify that
the incorporation of semantic features can significantly improve
the performance of Android malware classification. Deo et al.
(2016) propose to assess the quality of binary classification by
using probabilistic predictors. Although they both consider re-
training, adversarial environment is missing.

MUDFLOW (Avdiienko et al., 2015) argues that the pattern
of sensitive information flows in malware is statistically
different from those in benign apps. From an application,
MUDFLOW uses static analysis to extract the flow paths, and
these flow paths are then mapped to a feature vector used in
a specific classifier. DroidSIFT (Zhang et al., 2014) is unique in
designing features in terms of the generation of API depen-
dency graphs G for each app, and the construction of the
feature vector of the app. The features represent the similar-
ity of the graphs G corresponding to the database of graphs
of known benign apps and malware apps. Finally, the feature
vectors are used in anomaly detection. However, the dataset
for detection is not large enough, yielding low effectiveness
and confidence in classification. DroidMat (Wu et al., 2012)
uses a static feature-based mechanism, which considers
static information (e.g., permission, intent messages, API
calls) for detecting Android malware. It uses K-means algo-
rithm to enhance the malware modeling capability and KNN
algorithm to classify apps as benign or malicious. However, it
does not extract semantic features for training and does not
take adversarial environment into consideration. Shabtai et al.
(2012) presented a host-based malware detection system
that continuously monitors mobile devices to detect mali-
cious data using a supervised machine-learning anomaly
detection technique. It focuses on host-based malware,
while our approach focuses on mobile malware detection
in adversarial environment. Most recently, MAMADROID
(Mariconti et al., 2017) is built to maintain resilience to API
changes, but it requires a large amount of memory when
performing classification and a substantial amount of time
per app.

8.2. Evasion techniques

Currently, the issues of understanding machine-learning se-
curity in adversarial settings mainly focus on spam email
detection (Biggio et al., 2014; Brückner et al., 2012; Debarr et al.,
2013; Wang et al., 2014; Zhang et al., 2016). Recently, many sta-
tistical adversarial models are proposed to construct effective
adversarial samples, such as using deep neutral networks
(Grosse et al., 2016; Li and Li, 2016; McDaniel et al., 2016;
Papernot et al., 2016; Shen et al., 2016). As seen from a generic

perspective, Wang et al. (2016) utilized the notation of topo-
logical spaces and oracles to explain why an adversarial sample
can bypass a classifier, and they generated a sufficient and nec-
essary condition to determine the robustness of classifiers under
adversarial environment. Goodfellow et al. (2014) explained and
generated adversarial samples for adversarial training to reduce
test error. However, all of these studies did not focus on spe-
cific causation leading to evasion in the mobile malware context.
They also did not show the feasibility how these adversarial
samples work in the wild.

For conventional malware evasion, one straightforward
evasion technique is to repackage a benign app with small snip-
pets of malicious code added to several classes. Moreover,
attackers could also use reflection, dynamic code loading, or
native code (Poeplau et al., 2014). Such attempts to escape de-
tection are likely to be deemed suspicious. Among them,
DroidChameleon (Rastogi et al., 2014) integrates three types of
transformation techniques and generates obfuscated mobile
malware. Mystique (Meng et al., 2016) develops a framework
to automatically generate malware covering four attack fea-
tures and two evasion features to obfuscate the generated
malware. For the general defense, Cao and Yang (2015) pre-
sented a proof-of-concept machine unlearning prototype that
can rapidly forget data to regain privacy, security, and usabil-
ity. The current paper is an extension of a poster (Chen et al.,
2016b).

In summary, previous works either conduct evasion tech-
niques without considering the feature space or only use
machine learning-based approaches. With our experiments and
real-world case studies, it is obvious that attacks can also poison
features while preserving maliciousness, and our experi-
ments verified that the resulting fake variants with poisoned
features impaired discriminative classifiers and succeeded in
lowering the detection score in a test environment. To the best
of our knowledge, this is one of the first papers to accommo-
date adversarial machine learning into mobile malware
detection. We are also the first paper to show the possibility
to defend against adversarial attacks on mobile malware, to
the greatest extent.

9. Conclusion

We reviewed several challenges for the malware detection
problem. We showed how the conventional machine learning
classifiers can fail against determined attackers. Based on these
insights, we designed and evaluated three types of attackers
targeting the training phases to poison our detection. Through
simulation, we presented practical bounds for the accuracy loss
to each attacker. To address this threat, we therefore pro-
posed our detection system, KUAFUDET, and showed it
significantly reduces false negatives and boosts the detection
accuracy by at least 15%.

We argue that it is essential to inform researchers consid-
ering how attackers will adapt to the conventional detection,
as well as to inform developers working on the next-generation
malware detection systems. We conjecture that the arms race
will be over only when the effectiveness of early detection will
sufficiently increase the cost of infection.
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Appendix A. Syntax and Semantic Features

Table A.11 – 175 syntax features and 20 semantic features for training classifiers.

PERMISSION SET_WALLPAPER TelephonyManager.getSubscriberId LocationManager.addNmeaListener

ACCESS_COARSE_LOCATION SET_WALLPAPER_HINTS TelephonyManager.getVoiceMailNumber LocationManager.addProximityAlert
ACCESS_FINE_LOCATION STATUS_BAR TelephonyManager.hasIccCard LocationManager.addTestProvider
ACCESS_LOCATION_EXTRA_COMMANDS SYSTEM_ALERT_WINDOW TelephonyManager.isNetworkRoaming LocationManager.clearTestProviderLocation
ACCESS_NETWORK_STATE UPDATE_DEVICE_STATS SmsManager.divideMessage LocationManager.getBestProvider
ACCESS_WIFI_STATE USE_CREDENTIALS SmsManager.getDefault LocationManager.getGpsStatus
AUTHENTICATE_ACCOUNTS VIBRATE SmsManager.sendDataMessage LocationManager.getLastKnownLocation
BATTERY_STATS WAKE_LOCK SmsManager.sendMultipartTextMessage LocationManager.requestLocationUpdates
BLUETOOTH WRITE_APN_SETTINGS SmsManager.sendTextMessage LocationManager.sendExtraCommand
BROADCAST_SMS WRITE_SETTINGS HttpURLConnection.disconnect WifiManager.addNetwork
BROADCAST_STICKY WRITE_SMS HttpURLConnection.getContentEncoding WifiManager.calculateSignalLevel
CALL_PHONE WRITE_EXTERNAL_STORAGE HttpURLConnection.getPermission WifiManager.createWifiLock
CAMERA INTENT HttpURLConnection.getRequestMethod WifiManager.disconnect
CHANGE_COMPONENT_ENABLED_STATE action.DELETE HttpURLConnection.getResponseCode WifiManager.enableNetwork
CHANGE_CONFIGURATION action.GET_CONTENT HttpURLConnection.getResponseMessage WifiManager.getConfiguredNetworks
CHANGE_NETWORK_STATE action.MAIN HttpURLConnection.usingProxy WifiManager.getConnectionInfo
CHANGE_WIFI_MULTICAST_STATE action.PICK ContentResolver.bulkInsert WifiManager.getDhcpInfo
CHANGE_WIFI_STATE action.SEND ContentResolver.getType WifiManager.getScanResults
CLEAR_APP_CACHE action.SET_WALLPAPER ContentResolver.openAssetFileDescriptor WifiManager.getWifiState
CONTROL_LOCATION_UPDATES action.VIEW ContentResolver.query WifiManager.isWifiEnabled
DELETE_CACHE_FILES category.BROWSABLE ContentResolver.registerContentObserver WifiManager.removeNetwork
DELETE_PACKAGES category.DEFAULT ContentResolver.update WifiManager.saveConfiguration
DEVICE_POWER category.HOME ContentResolver.delete WifiManager.setWifiEnabled
DISABLE_KEYGUARD category.INFO Runtime.getRuntime NotificationManager.cancel
EXPAND_STATUS_BAR category.LAUNCHER Runtime.exec NotificationManager.notify
FLASHLIGHT HARDWARE Runtime.addShutdownHook PackageManager.checkPermission
GET_PACKAGE_SIZE camera Runtime.maxMemory PowerManager.isInteractive
GET_TASKS camera.autofocus URLConnection.addRequestProperty PowerManager.isScreenOn
INSTALL_PACKAGES sensor.accelerometer URLConnection.connect PowerManager.newWakeLock
INTERNET telephony URLConnection.getConnectTimeout SEMANTIC
KILL_BACKGROUND_PROCESSES touchscreen URLConnection.getContent *Install application*
MODIFY_PHONE_STATE API CALL URLConnection.getContentType *Uninstall application*
MOUNT_UNMOUNT_FILESYSTEMS URL.openConnection URLConnection.getDefaultUseCaches *Get installed packages*
NFC URL.openStream URLConnection.getPermission *Monitor URI*
PERSISTENT_ACTIVITY URL.getContent URLConnection.getURL *Download file*
PROCESS_OUTGOING_CALLS TelephonyManager.getCallState URLConnection.setConnectTimeout *Get location*
READ_CALL_LOG TelephonyManager.getCellLocation URLConnection.setReadTimeout *Read SD card*
READ_CONTACTS TelephonyManager.getDeviceId ActivityManager.getLargeMemoryClass *Write SD card*
READ_EXTERNAL_STORAGE TelephonyManager.getDeviceSoftwareVersion ActivityManager.getRunningAppProcesses *Request for chmod*
READ_LOGS TelephonyManager.getNeighboringCellInfo ActivityManager.isLowRamDevice *Start http connection*
READ_PHONE_STATE TelephonyManager.getNetworkCountryIso ActivityManager.killBackgroundProcesses *Send Sms*
READ_PROFILE TelephonyManager.getNetworkOperator ActivityManager.restartPackage *Receive Sms*
READ_SMS TelephonyManager.getNetworkOperatorName BluetoothAdapter.cancelDiscovery *Delete Sms*
RECEIVE_BOOT_COMPLETED TelephonyManager.getNetworkType BluetoothAdapter.getAddress *Intercept Sms receiver*
RECEIVE_MMS TelephonyManager.getPhoneType BluetoothAdapter.getBondedDevices *Get wifi info*
RECEIVE_SMS TelephonyManager.getSimCountryIso BluetoothAdapter.getRemoteDevice *Get Logs*
RECEIVE_WAP_PUSH TelephonyManager.getSimOperator BluetoothSocket.connect *Get Class loader*
RECORD_AUDIO TelephonyManager.getSimOperatorName DownloadManager.enqueue *Get contacts*
RESTART_PACKAGES TelephonyManager.getSimSerialNumber DownloadManager.query *Get account*
SEND_SMS TelephonyManager.getSimState LocationManager.addGpsStatusListener *Get phone type/Sim serial number/device

id/subscriber id/IMSI*
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